Gravitational waves from first order phase transition in Higgs portal dark matter models

Toshinori Matsui (松井 俊憲)¹

arXiv:1609.00297 [hep-ph] (PLB), K. Hashino¹, M. Kakizaki¹, S. Kanemura¹, P. Ko², TM² arXiv:1706.09721 [hep-ph] (JHEP), Z. Kang^{2,3}, P. Ko², TM² arXiv:1802.02947 [hep-ph] (JHEP), K. Hashino^{1,4}, M. Kakizaki¹, S. Kanemura⁴, P. Ko², TM² ¹U. of Toyama ¹, ²KIAS ¹, ³Huazhong Univ. of Science and Technology ¹, ⁴Osaka U. ¹

Physics behind the EW symmetry breaking

- No principle in the SM Higgs sector ${\cal L}^{\Phi}_{
 m SM}=|D_{\mu}\Phi|^2-V_{
 m SM}(\Phi)-\overline{\psi}_i y_{ij}\psi_j\Phi+{
 m h.c.}$
 - Higgs boson couplings might be deviated from the SM. $\rightarrow hVV$ $\rightarrow hhh$
- Physics behind the EW symmetry breaking @finite temp. $V_{\text{eff}}(\varphi, T)$

- 1st order phase transition is not realized in the SM with $m_h = 125$ GeV.
- If 1st order phase transition is realized, gravitational waves is produced in extended Higgs sector!

otential barrie

Ф.

- New physics is required to solve beyond the SM (BSM) phenomena.
 - Existence of dark matter, Baryon asymmetry of the Universe, Neutrino oscillations, Cosmic inflation,...
- Extended Higgs sectors are required in several BSM models.
 - Higgs portal DM is the simplest WINP DM scenario which is related to Higgs physics at EW scale.
 - Electroweak baryogenesis requires strongly 1stOPT (sphaleron decoupling criterion): $arphi_*/T_*\gtrsim$
- Gravitational waves can be a new technique to explore BSM!

GWs from 1stOPT

- GW is predicted in the general relativity.
 - Weak field approximation $g_{\mu
 u}(x) = \eta_{\mu
 u} + h_{\mu
 u}(x) ~~|h_{\mu
 u}| \ll 1$
 - Wave eq. from Einstein eq.

$$-\Box \left(h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h^{\alpha}{}_{\alpha} \right) = 16\pi G T_{\mu\nu}$$

Stochastic backgrounds of GWs

$$\rho_{\rm GW} = \frac{1}{32\pi G} < \dot{h}_{\alpha\beta} \dot{h}^{\alpha\beta} >$$

- Energy density of GWs $\Omega_{\rm GW}(f) \equiv rac{1}{
ho_{
m c}} rac{{
m d}
ho_{
m GW}}{{
m d}\ln f}$

M. Kamionkowski, astro-ph/9310044 (PRD)

Numerical simulation

$$\Omega_{\rm GW}^{\rm peak} \propto \left(\frac{H_t}{\beta}\right)^n \left(\frac{\kappa\alpha}{1+\alpha}\right)^m$$
C. Caprini *et al.*, 1512.06239 (JCAP)

- Particle physics models w/1stOPT
 - $\alpha \sim$ Normalized difference of potential minima

 $V_{\rm eff}(\varphi, 7)$

$$- \beta^{-1} \sim$$
 Transition time \propto Bubble size

 10^{-3}

collision [n

 10^{-1}

2. m=2

turbulence [n=2, m=3/2]

C. Caprini *et al.*, 1512.06239 (JCAP) Frequency [Hz] We can discuss the detectability at GW observations with model predictions.

 $\Omega_{GW} h^2$

10⁻¹⁵

10⁻¹⁸

 10^{-2}

L=O(10⁶)km (LISA), 1000km (DECIGO), 4km (LIGO), 3km (Virgo, KAGRA)

Dec. 28-31, 2018 [5th] Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Hsinchu+Kaohsiung

- $\begin{array}{ll} \bullet & \underline{\text{Singlet scalar DM}}\left(m_{S},\lambda_{HS},\lambda_{S}\right) \underline{}_{1210.4196,\ 1409.0005,\ 1611.02073,\ 1702.06124,\ 1704.03381,\ \dots} \\ & \mathcal{L}_{\mathrm{SSDM}}=-V_{0}(\Phi,S) \\ & & \mathrm{Scalar potential is imposed unbroken}\ Z_{2} \,\mathrm{symmetry.} & \left\langle S \right\rangle = 0 \\ & m_{S}^{2}=\mu_{S}^{2}+\lambda_{HS}v^{2} \end{array}$
- Singlet Fermion DM $(m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_{\psi}, \lambda)$ 1112.1847, 1209.4163, 1305.3452, <u>1402.3087</u>, ... $\mathcal{L}_{SFDM} = \overline{\psi}(i \partial - m_{\psi_0})\psi - \lambda S \overline{\psi} \psi - V_0(\Phi, S)$ - Scalar potential is general shape with a real Higgs singlet scalar field (HSM).

 $\begin{array}{ll} & \underbrace{\text{Vector DM}}_{\mathcal{L}_{\text{VDM}}}\left(m_{H},\theta;m_{X},g_{X}\right) \text{ 1212.2131, } \underline{1412.3823, } \dots \\ & \mathcal{L}_{\text{VDM}}=-\frac{1}{4}V_{\mu\nu}V^{\mu\nu}+(D_{\mu}S)^{2}+V_{0}(\Phi,S) & V_{0}(\Phi,S)=-\mu_{\Phi}^{2}|\Phi|^{2}-\mu_{S}^{2}|S|^{2}+\lambda_{\Phi}|\Phi|^{4}+\lambda_{S}|S|^{4}+\lambda_{\Phi S}|\Phi|^{2}|S|^{2} \\ & D_{\mu}S=(\partial_{\mu}+ig_{X}Q_{S}X_{\mu})S & S=\frac{1}{\sqrt{2}}(v_{S}+\phi_{2}+ix) & m_{X}\equiv g_{X}|Q_{S}|v_{S} \end{array}$

- Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)

Singlet scalar DM $(m_s, \lambda_{Hs}, \lambda_s)$ 1210.4196, 1409.0005, 1611.02073, 1702.06124, 1704.03381, ... $\mathcal{L}_{ ext{SSDM}} = -V_0(\Phi, S)$ $V_0(\Phi,S) = -\mu_{\Phi}^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_{\Phi} |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$ – Scalar potential is imposed unbroken Z2 symmetry. $\langle S
angle = 0$ $m_S^2 = \mu_S^2 + \lambda_{HS} v^2$

Singlet Fermion DM (m_H , θ , v_s , $\mu_{\Phi s}$, $\mu_{s,\mu's}$; m_{ψ} , λ) • 1112.1847, 1209.4163, 1305.3452, 1402.3087, ...

Scalar potential is general shape with a real Higgs singlet scalar field (HSM).

- **Vector DM** $(m_H, \theta; m_X, g_X)$ 1212.2131, <u>1412.3823</u> ... $\begin{array}{c} \mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^{2} + V_{0}(\Phi, S) \\ D_{\mu}S = (\partial_{\mu} + ig_{X}Q_{S}X_{\mu})S \\ \end{array} \begin{array}{c} V_{0}(\Phi, S) = -\mu_{\Phi}^{2} |\Phi|^{2} - \mu_{S}^{2} |S|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{S} |S|^{4} + \lambda_{\Phi S} |\Phi|^{2} |S|^{2} \\ M_{X} \equiv g_{X} |Q_{S}| v_{S} \\ \end{array}$
 - Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (dark Higgs mechanism)

1stOPT in scalar DM model

Curtin, Meade, Yu, 1409.0005 (JHEP) See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

Curtin, Meade, Yu, 1409.0005 (JHEP) See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

7/10

Z_3 extension: S^3 term is allowed (extra parameter A_s)

→ It is possible to satisfy the DM direct search bound! Z. Kang, P. Ko, TM, arXiv:1706.09721 [hep-ph] (JHEP)

Curtin, Meade, Yu, 1409.0005 (JHEP) See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

- Vector DM $(m_H, \theta; m_X, g_X)$ 1212.2131, 1412.3823, ... $\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^2 + V_0(\Phi, S)$ $D_{\mu}S = (\partial_{\mu} + ig_X Q_S X_{\mu})S$ $S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + ix)$ $m_X \equiv g_X |Q_S| v_S$
 - Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)

- Singlet scalar DM $(m_s, \lambda_{HS}, \lambda_s)$ 1210.4196, 1409.0005, 1611.02073, 1702.06124, 1704.03381, ...
 - $\mathcal{L}_{ ext{SSDM}} = -V_0(\Phi,S)$

– Scalar potential is imposed unbroken Z2 symmetry. $\langle S
angle = 0$ $m_S^2 = \mu_S^2 + \lambda_{HS} v^2$

- PT can be caused by thermal loop effect, but excluded by DM direct searches. [Curtin, Meade, Yu, 1409.0005 (JHEP)]
 - \rightarrow Z₃ extension allow to satisfy the constraint from DM direct searches but $\Omega_{DM} < \Omega_{obs}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

Singlet Fermion DM (
$$m_H$$
, θ, v_s , $\mu_{\Phi s}$, μ_{s_c} , μ'_s ; m_{ψ} , λ)

1112.1847, 1209.4163, 1305.3452, <u>1402.3087</u>, ...

$$\mathcal{L}_{\rm SFDM} = \overline{\psi}(i\partial \!\!\!/ - m_{\psi_0})\psi - \lambda S \overline{\psi}\psi - V_0(\Phi, S)$$

$$S^{(S)} = -\mu_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4} + \mu_{\Phi S} |\Phi|^{2} S + rac{\lambda_{\Phi S}}{2} |\Phi|^{2} S^{2} + \mu_{S}^{3} S + rac{m_{S}}{2} S^{2} + rac{\mu_{S}}{3} S^{3} + rac{\lambda_{S}}{4} S^{4} + S^{4}$$

 $V_0(\Phi,S) = -\mu_{\Phi}^2 |\Phi|^2 + \frac{1}{2}\mu_S^2 S^2 + \lambda_{\Phi} |\Phi|^4 + \frac{1}{4}\lambda_S S^4 + \frac{1}{2}\lambda_{\Phi S} |\Phi|^2 S^2$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- PT is dominantly caused by tree level (scalar mixing) effect. [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297(PLB)]

 $V_0(\Phi,$

- DM contributes as the thermal loop effect. [Li, Zhou, 1402.3087 (JHEP)]
- <u>Vector DM</u> $(m_H, \theta; m_X, g_X)$ 1212.2131, <u>1412.3823</u>, ... $\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^2 + V_0(\Phi, S) \qquad V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$ $D_{\mu}S = (\partial_{\mu} + ig_X Q_S X_{\mu}) S \qquad S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + ix) \qquad m_X \equiv g_X |Q_S| v_S$
 - Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)

1stOPT in Fermion DM model

- Singlet scalar DM $(m_s, \lambda_{HS}, \lambda_s)$ 1210.4196, 1409.0005, 1611.02073, 1702.06124, 1704.03381, ...
 - $\mathcal{L}_{ ext{SSDM}} = -V_0(\Phi,S)$

– Scalar potential is imposed unbroken Z2 symmetry. $\langle S
angle = 0$ $m_S^2 = \mu_S^2 + \lambda_{HS} v^2$

- PT can be caused by thermal loop effect, but excluded by DM direct searches. [Curtin, Meade, Yu, 1409.0005 (JHEP)]
 - \rightarrow Z₃ extension allow to satisfy the constraint from DM direct searches but $\Omega_{DM} < \Omega_{obs}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

Singlet Fermion DM (
$$m_H$$
, θ, v_s , $\mu_{\Phi s}$, $\mu_{s,}$ μ'_s ; m_{ψ} , λ)

1112.1847, 1209.4163, 1305.3452, <u>1402.3087</u>, ...

$$\mathcal{L}_{\rm SFDM} = \overline{\psi}(i\partial \!\!\!/ - m_{\psi_0})\psi - \lambda S \overline{\psi}\psi - V_0(\Phi, S)$$

$$S_{\Phi,S}^{(p,S)} = -\mu_{\Phi}^{2}|\Phi|^{2} + \lambda_{\Phi}|\Phi|^{4} + \mu_{\Phi S}|\Phi|^{2}S + rac{\lambda_{\Phi S}}{2}|\Phi|^{2}S^{2} + \mu_{S}^{3}S + rac{m_{S}}{2}S^{2} + rac{\mu_{S}}{3}S^{3} + rac{\lambda_{S}}{4}S^{4} + S^{4}$$

 $S = v_{S} + \phi_{2} \qquad m_{\psi} \equiv m_{\psi_{0}} + \lambda v_{S}$

 $V_0(\Phi,S) = -\mu_{\Phi}^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_{\Phi} |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- PT is dominantly caused by tree level (scalar mixing) effect. [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297(PLB)]

 $V_0(\mathbf{I})$

- DM contributes as the thermal loop effect. [Li, Zhou, 1402.3087 (JHEP)]
 - \rightarrow DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.
- <u>Vector DM</u> $(m_H, \theta; m_X, g_X)$ 1212.2131, <u>1412.3823</u>, ...

 $\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^{2} + V_{0}(\Phi, S)$ $V_{0}(\Phi, S) = -\mu_{\Phi}^{2} |\Phi|^{2} - \mu_{S}^{2} |S|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{S} |S|^{4} + \lambda_{\Phi S} |\Phi|^{2} |S|^{2}$ $D_{\mu}S = (\partial_{\mu} + ig_{X}Q_{S}X_{\mu})S$ $S = \frac{1}{\sqrt{2}} (v_{S} + \phi_{2} + ix)$ $m_{X} \equiv g_{X} |Q_{S}| v_{S}$

- Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)

- Singlet scalar DM $(m_s, \lambda_{HS}, \lambda_s)$ 1210.4196, 1409.0005, 1611.02073, 1702.06124, 1704.03381, ...
 - $\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 + \frac{1}{2}\mu_S^2 S^2 + \lambda_{\Phi} |\Phi|^4 + \frac{1}{4}\lambda_S S^4 + \frac{1}{2}\lambda_{\Phi S} |\Phi|^2 S^2$

Scalar potential is imposed unbroken Z₂ symmetry.

- PT can be caused by thermal loop effect, but excluded by DM direct searches. [Curtin, Meade, Yu, 1409.0005 (JHEP)]
 - \rightarrow Z₃ extension allow to satisfy the constraint from DM direct searches but $\Omega_{DM} < \Omega_{obs}$ [Kang, Ko, TM, 1706.09721 (JHEP)]
- Singlet Fermion DM (m_H , θ , v_s , $\mu_{\Phi s}$, μ_{s_s} , μ'_s ; m_{ψ} , λ)

1112.1847, 1209.4163, 1305.3452, <u>1402.3087</u>, ...

$$\mathcal{L}_{\rm SFDM} = \overline{\psi}(i\partial \!\!\!/ - m_{\psi_0})\psi - \lambda S \overline{\psi}\psi - V_0(\Phi, S)$$

$$S_{\Phi,S)} = -\mu_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4} + \mu_{\Phi S} |\Phi|^{2}S + rac{\lambda_{\Phi S}}{2} |\Phi|^{2}S^{2} + \mu_{S}^{3}S + rac{m_{S}}{2}S^{2} + rac{\mu_{S}}{3}S^{3} + rac{\lambda_{S}}{4}S^{4} + S^{4} + S^$$

 $\langle S \rangle = 0 \qquad \qquad m_S^2 = \mu_S^2 + \lambda_{HS} v^2$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- PT is dominantly caused by tree level (scalar mixing) effect. [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297(PLB)]

 $V_0(\cdot$

- DM contributes as the thermal loop effect. [Li, Zhou, 1402.3087 (JHEP)]
 - \rightarrow DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.

• Vector DM
$$(m_H, \theta; m_X, g_X)$$
 1212.2131, 1412.3823, ...

$$\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^2 + V_0(\Phi, S) \qquad V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_{\mu}S = (\partial_{\mu} + ig_X Q_S X_{\mu})S \qquad S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + ix) \qquad m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)

1stOPT in Vector DM model

[XENON Collaboration, 1705.06655 (PRL)]

Relic abundance of DM

 $\Omega_{obs}h^2=0.1199\pm0.0027 \rightarrow \text{contours of } \log_{10} (\Omega_x/\Omega_{obs})$ [Planck Collaboration, 1502.01589 (Astron. Astrophys.)]

- <u>Singlet scalar DM</u> (*m_s*, λ_{*Hs*}, λ_s) <u>1210.4196</u>, <u>1409.0005</u>, <u>1611.02073</u>, <u>1702.06124</u>, <u>1704.03381</u>, ...
 - $\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 + \frac{1}{2}\mu_S^2 S^2 + \lambda_{\Phi} |\Phi|^4 + \frac{1}{4}\lambda_S S^4 + \frac{1}{2}\lambda_{\Phi S} |\Phi|^2 S^2$

Scalar potential is imposed unbroken Z₂ symmetry.

- PT can be caused by thermal loop effect, but excluded by DM direct searches. [Curtin, Meade, Yu, 1409.0005 (JHEP)]
 - \rightarrow Z₃ extension allow to satisfy the constraint from DM direct searches but $\Omega_{DM} < \Omega_{obs}$ [Kang, Ko, TM, 1706.09721 (JHEP)]
- Singlet Fermion DM (m_H , θ , v_s , $\mu_{\Phi s}$, μ_{s_s} , μ'_s ; m_{ψ} , λ)

1112.1847, 1209.4163, 1305.3452, <u>1402.3087</u>, ...

$$\mathcal{L}_{\rm SFDM} = \overline{\psi}(i\partial \!\!\!/ - m_{\psi_0})\psi - \lambda S\overline{\psi}\psi - V_0(\Phi, S)$$

$$S(S) = -\mu_{\Phi}^{2}|\Phi|^{2} + \lambda_{\Phi}|\Phi|^{4} + \mu_{\Phi S}|\Phi|^{2}S + \frac{\lambda_{\Phi S}}{2}|\Phi|^{2}S^{2} + \mu_{S}^{3}S + \frac{m_{S}^{2}}{2}S^{2} + \frac{\mu_{S}}{3}S^{3} + \frac{\lambda_{S}}{4}S^{4}$$

 $S = v_{S} + \phi_{2} \qquad m_{\psi} \equiv m_{\psi_{0}} + \lambda v_{S}$

 $\langle S \rangle = 0 \qquad \qquad m_S^2 = \mu_S^2 + \lambda_{HS} v^2$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- PT is dominantly caused by tree level (scalar mixing) effect. [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297(PLB)]

 $V_0(\Phi,$

- DM contributes as the thermal loop effect. [Li, Zhou, 1402.3087 (JHEP)]
 - \rightarrow DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.
- <u>Vector DM</u> $(m_H, \theta; m_X, g_X)$ 1212.2131, <u>1412.3823</u>, ...

$$\begin{array}{c} \mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^{2} + V_{0}(\Phi, S) \\ D_{\mu}S = (\partial_{\mu} + ig_{X}Q_{S}X_{\mu})S \\ \end{array} \begin{array}{c} V_{0}(\Phi, S) = -\mu_{\Phi}^{2} |\Phi|^{2} - \mu_{S}^{2} |S|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{S} |S|^{4} + \lambda_{\Phi S} |\Phi|^{2} |S|^{2} \\ D_{\mu}S = (\partial_{\mu} + ig_{X}Q_{S}X_{\mu})S \\ \end{array} \begin{array}{c} S = \frac{1}{\sqrt{2}} (v_{S} + \phi_{2} + ix) \\ M_{X} \equiv g_{X} |Q_{S}| V_{S} \\ \end{array}$$

- Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM. (dark Higgs mechanism)
- PT is too weak to detect GWs. [Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947 (JHEP)] → Extension is needed.

[5th] Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Hsinchu+Kaohsiung