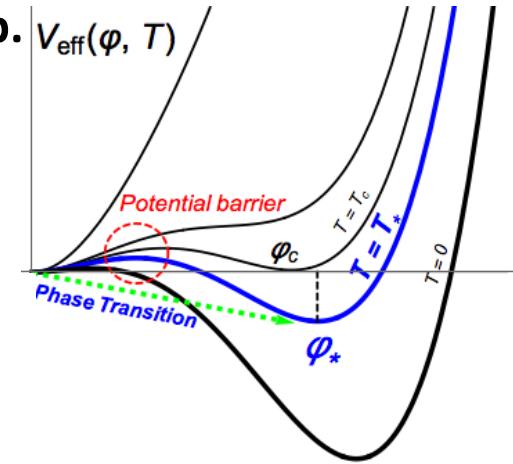
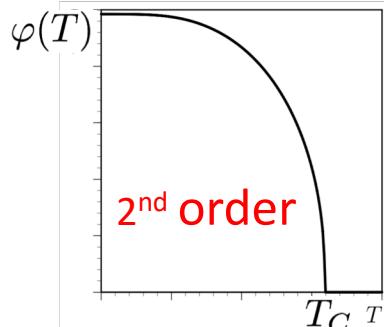
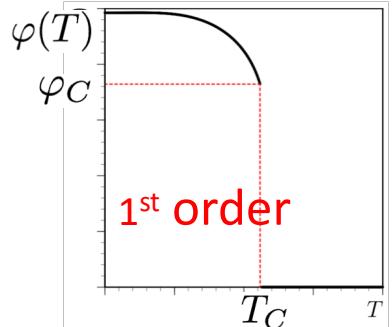


Gravitational waves from first order phase transition in Higgs portal dark matter models

Toshinori Matsui (松井 俊憲)¹

arXiv:1609.00297 [hep-ph] (PLB), K. Hashino¹, M. Kakizaki¹, S. Kanemura¹, P. Ko², TM²

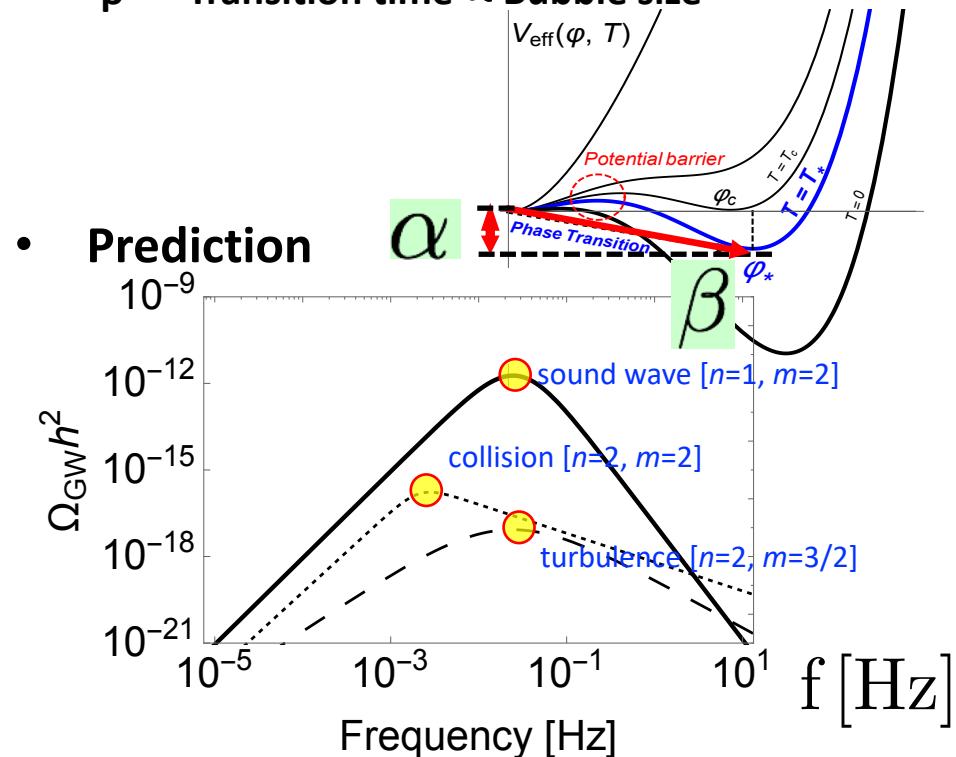



arXiv:1706.09721 [hep-ph] (JHEP), Z. Kang^{2,3}, P. Ko², TM²

arXiv:1802.02947 [hep-ph] (JHEP), K. Hashino^{1,4}, M. Kakizaki¹, S. Kanemura⁴, P. Ko², TM²

¹U. of Toyama , ²KIAS , ³Huazhong Univ. of Science and Technology , ⁴Osaka U.

Physics behind the EW symmetry breaking

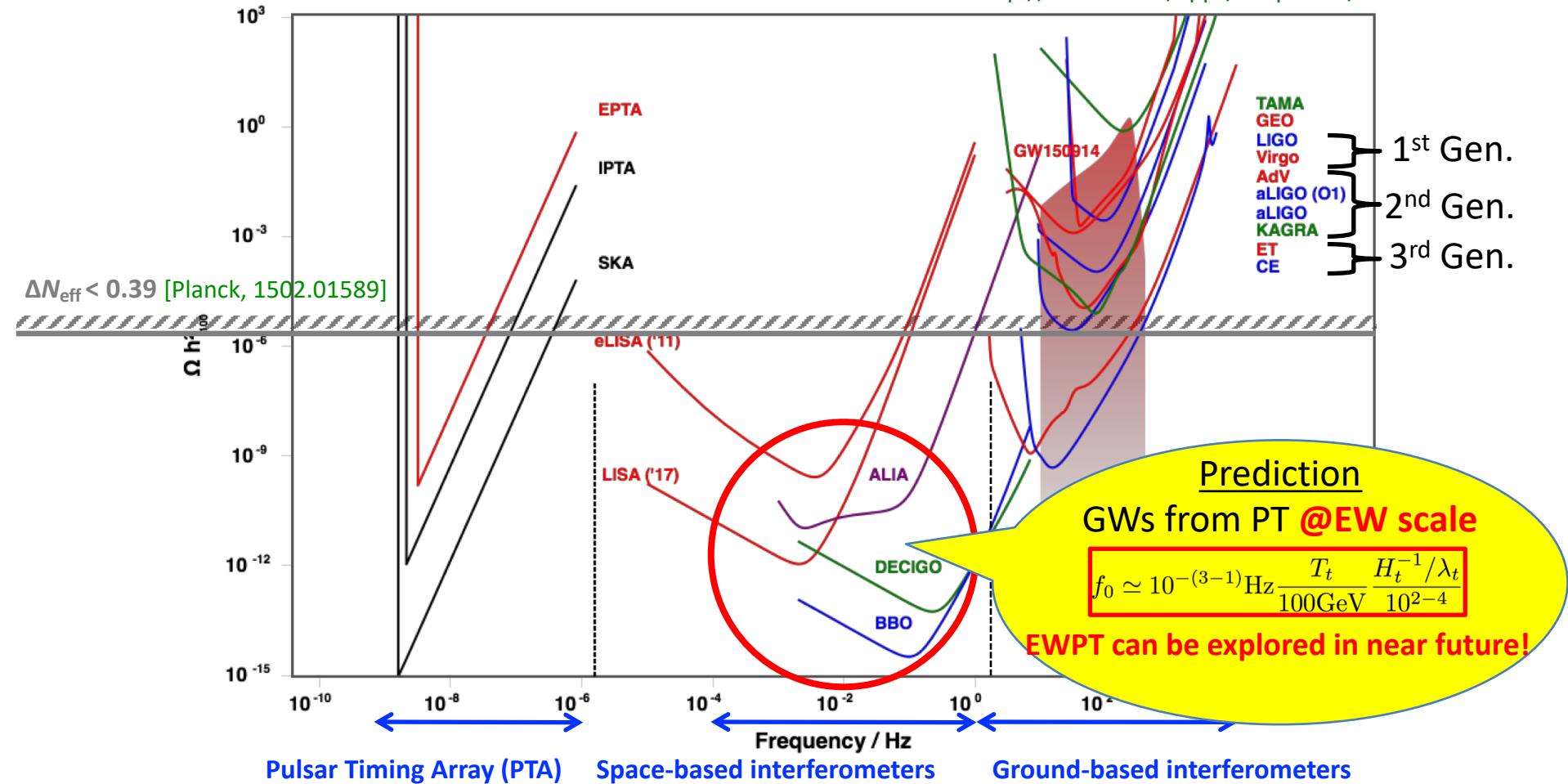
- **No principle in the SM Higgs sector** $\mathcal{L}_{\text{SM}}^{\Phi} = |D_{\mu}\Phi|^2 - V_{\text{SM}}(\Phi) - \bar{\psi}_i y_{ij} \psi_j \Phi + \text{h.c.}$
 - Higgs boson couplings might be deviated from the SM. \xrightarrow{hVV} \xrightarrow{hh} \xrightarrow{hff}
- **Physics behind the EW symmetry breaking @finite temp.**



- 1st order phase transition is not realized in the SM with $m_h = 125$ GeV.
- If 1st order phase transition is realized, gravitational waves is produced in extended Higgs sector!
- **New physics is required to solve beyond the SM (BSM) phenomena.**
 - Existence of dark matter, Baryon asymmetry of the Universe, Neutrino oscillations, Cosmic inflation,...
- **Extended Higgs sectors are required in several BSM models.**
 - Higgs portal DM is the simplest WINP DM scenario which is related to Higgs physics at EW scale.
 - Electroweak baryogenesis requires strongly 1stOPT (sphaleron decoupling criterion): $\varphi_*/T_* \gtrsim 1$.
- **Gravitational waves can be a new technique to explore BSM!**

GWs from 1stOPT

- **GW is predicted in the general relativity.**
 - Weak field approximation
 $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x) \quad |h_{\mu\nu}| \ll 1$
 - Wave eq. from Einstein eq.
 $-\square \left(h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h^{\alpha}_{\alpha} \right) = 16\pi G T_{\mu\nu}$
- **Stochastic backgrounds of GWs**
 - Energy density of GWs
 $\Omega_{\text{GW}}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{\text{GW}}}{d \ln f}$
M. Kamionkowski, astro-ph/9310044 (PRD)
 - Numerical simulation
 $\Omega_{\text{GW}}^{\text{peak}} \propto \left(\frac{H_t}{\beta} \right)^n \left(\frac{\kappa\alpha}{1+\alpha} \right)^m$
C. Caprini *et al.*, 1512.06239 (JCAP)


- **Particle physics models w/1stOPT**
 - $\alpha \sim \text{Normalized difference of potential minima}$
 - $\beta^{-1} \sim \text{Transition time} \propto \text{Bubble size}$

We can discuss the detectability at GW observations with model predictions.

Sensitivity of GW detectors

<http://rhcole.com/apps/GWplotter/>

$L = O(10^6) \text{ km}$ (LISA), 1000 km (DECIGO), 4 km (LIGO), 3 km (Virgo, KAGRA)

Higgs portal DM w/1stOPT

- **Singlet scalar DM** ($m_S, \lambda_{HS}, \lambda_S$) [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S)$$

- Scalar potential is imposed unbroken Z_2 symmetry.

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

$$\langle S \rangle = 0$$

$$m_S^2 = \mu_S^2 + \lambda_{HS} v^2$$

- **Singlet Fermion DM** ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)

[1112.1847](https://arxiv.org/abs/1112.1847), [1209.4163](https://arxiv.org/abs/1209.4163), [1305.3452](https://arxiv.org/abs/1305.3452), [1402.3087](https://arxiv.org/abs/1402.3087), ...

$$\mathcal{L}_{\text{SFDM}} = \bar{\psi} (i \not{\partial} - m_{\psi_0}) \psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2$$

$$m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).

- **Vector DM** ($m_H, \theta; m_X, g_X$) [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_\mu S = (\partial_\mu + i g_X Q_S X_\mu) S$$

$$S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + i x)$$

$$m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)

Higgs portal DM w/1stOPT

- Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$) [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.

$$\langle S \rangle = 0$$

$$m_S^2 = \mu_S^2 + \lambda_{HS} v^2$$

- Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)

$$\langle 1112.1847, 1209.4163, 1305.3452, 1402.3087, \dots \rangle$$

$$\mathcal{L}_{\text{SFDM}} = \bar{\psi} (i \not{\partial} - m_{\psi_0}) \psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2$$

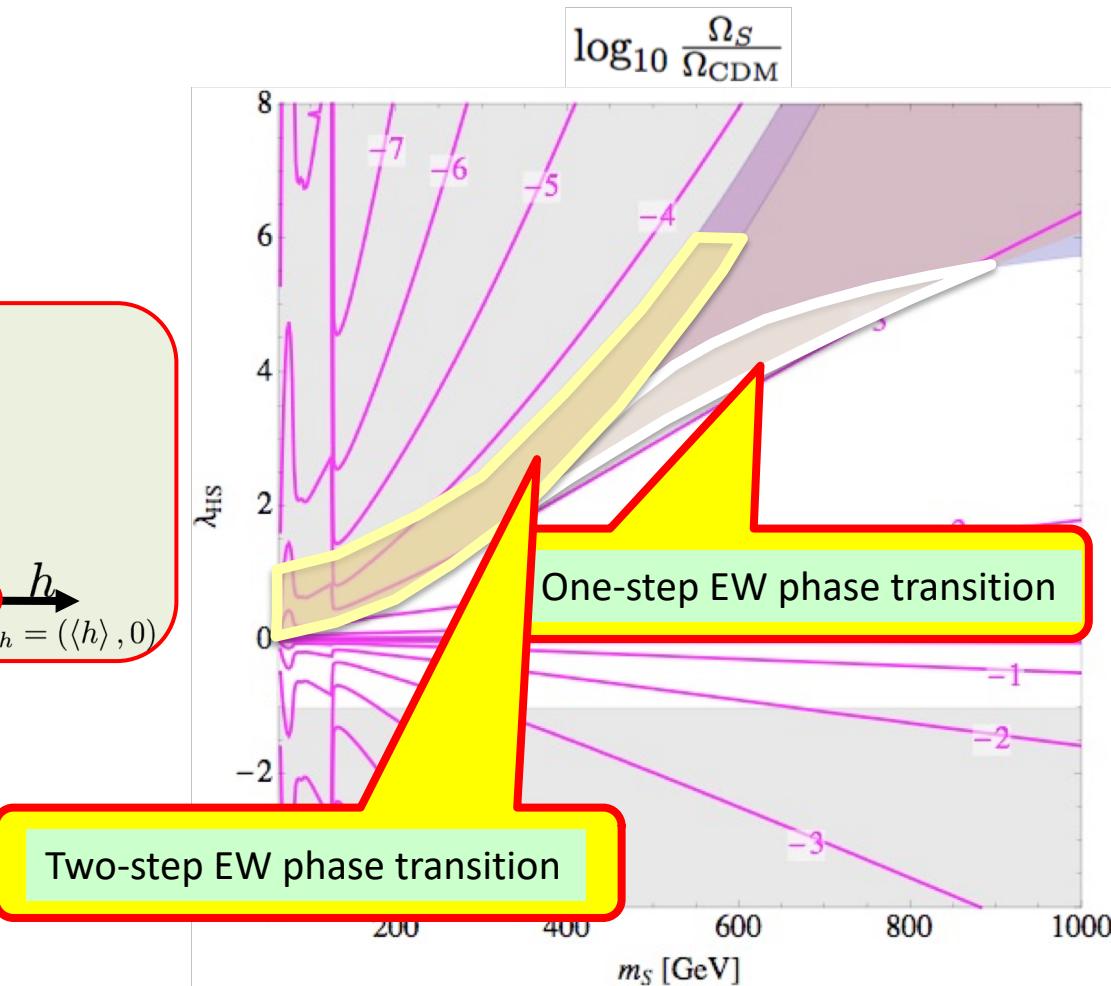
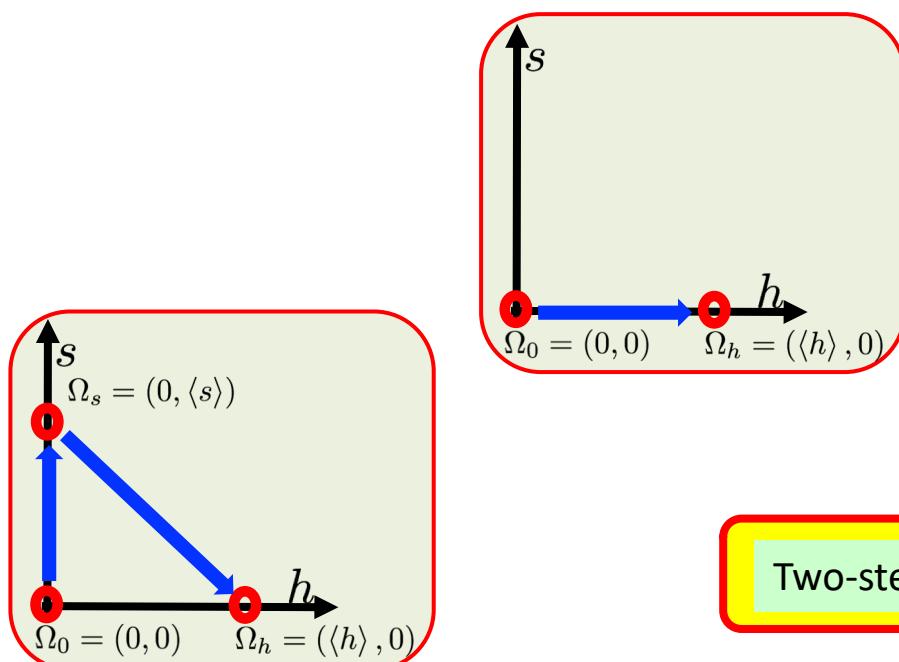
$$m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).

- Vector DM ($m_H, \theta; m_X, g_X$) [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

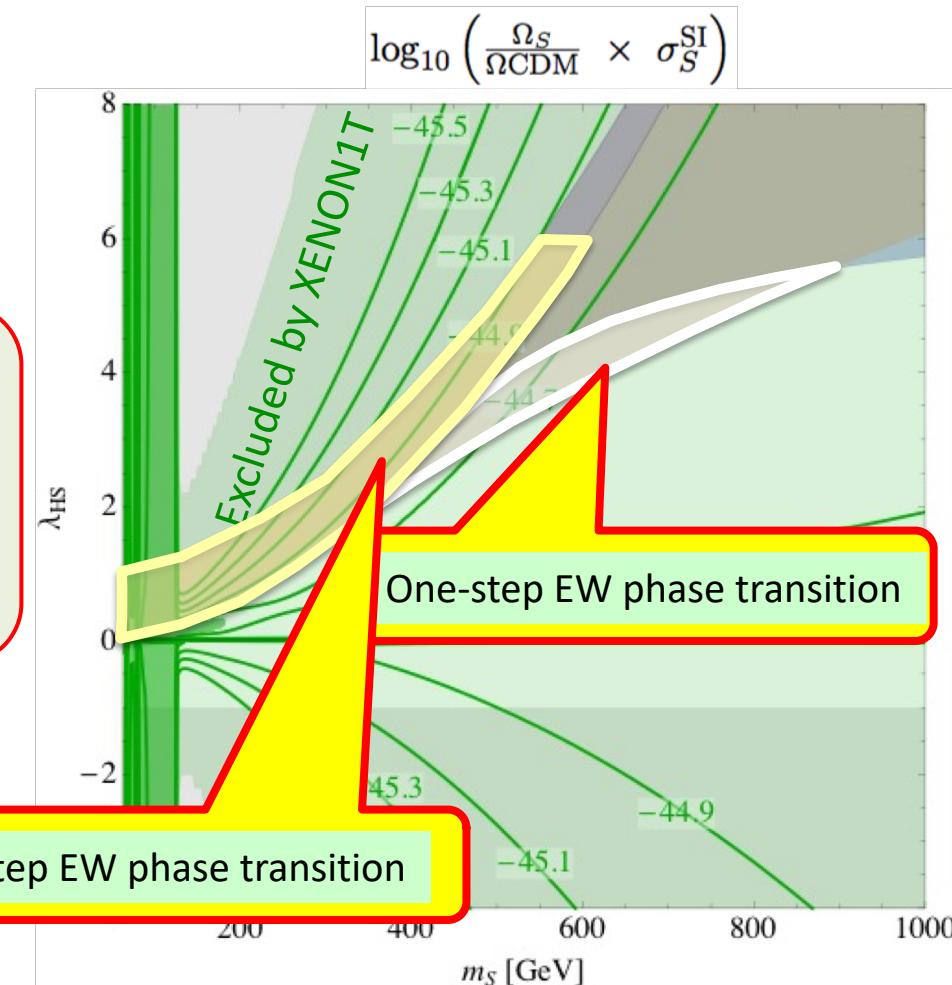
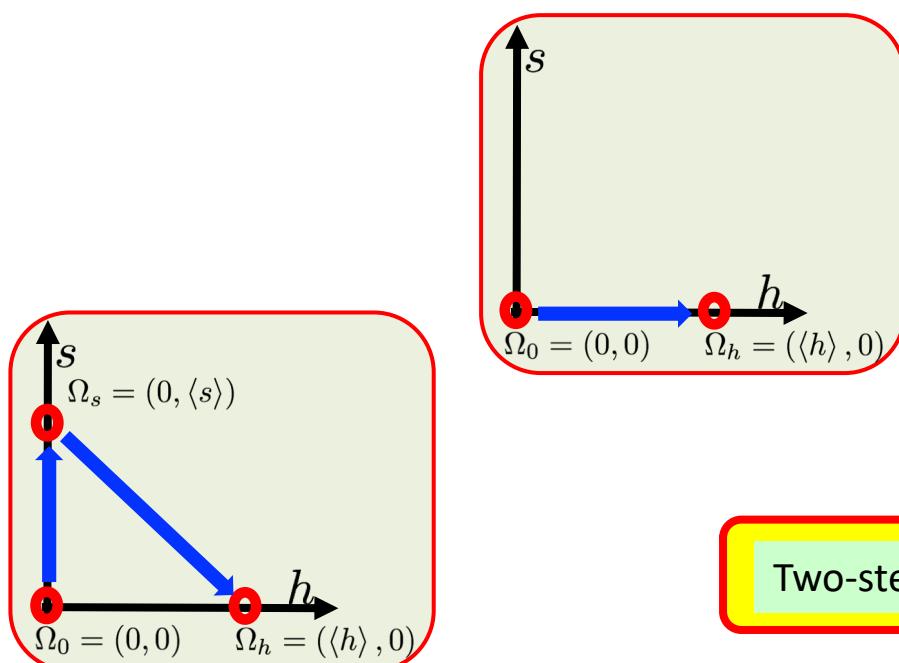
$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$



$$D_\mu S = (\partial_\mu + i g_X Q_S X_\mu) S$$

$$S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + i x)$$

$$m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)

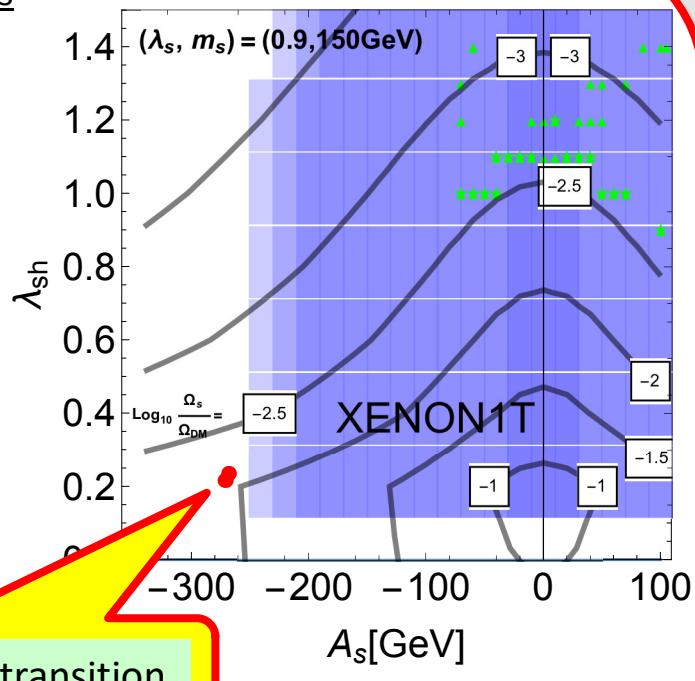
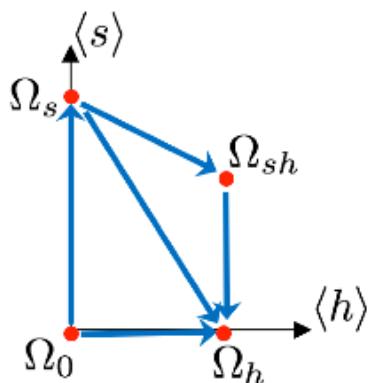


1stOPT in scalar DM model

Curtin, Meade, Yu, 1409.0005 (JHEP)

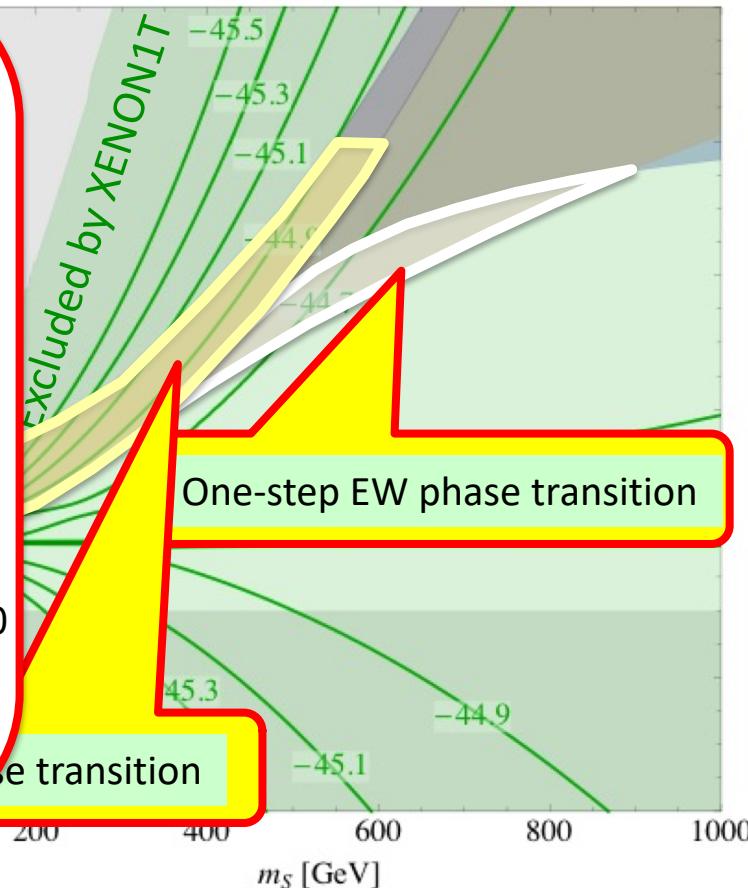
See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

1stOPT in scalar DM model → Excluded by XENON1T

Curtin, Meade, Yu, 1409.0005 (JHEP)



See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

Z_3 extension: S^3 term is allowed (extra parameter A_s)


→ It is possible to satisfy the DM direct search bound!

Z. Kang, P. Ko, TM, arXiv:1706.09721 [hep-ph] (JHEP)

Scalar DM with Z_3

Three-step EW phase transition

Curtin, Meade, Yu, 1409.0005 (JHEP)

See also Beniwal, Lewicki, Wells, White, Williams, 1702.06124 (JHEP)

Higgs portal DM w/1stOPT

- Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$) [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.
- **PT can be caused by thermal loop effect, but excluded by DM direct searches.** [Curtin, Meade, Yu, 1409.0005 (JHEP)]
 $\rightarrow Z_3$ extension allow to satisfy the constraint from DM direct searches but $\Omega_{\text{DM}} < \Omega_{\text{obs}}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

- Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)

$$1112.1847, 1209.4163, 1305.3452, \textcolor{blue}{1402.3087}, \dots$$

$$\mathcal{L}_{\text{SFDM}} = \bar{\psi}(i\cancel{D} - m_{\psi_0})\psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2 \quad m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).

- Vector DM ($m_H, \theta; m_X, g_X$) [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_\mu S = (\partial_\mu + i g_X Q_S X_\mu) S \quad S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + i x) \quad m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)

Higgs portal DM w/1stOPT

- **Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$)** [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{SSDM} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.
- **PT can be caused by thermal loop effect, but excluded by DM direct searches.** [Curtin, Meade, Yu, 1409.0005 (JHEP)]
→ Z_3 extension allow to satisfy the constraint from DM direct searches but $\Omega_{\text{DM}} < \Omega_{\text{obs}}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

- **Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)**

$$1112.1847, 1209.4163, 1305.3452, \textcolor{blue}{1402.3087}, \dots$$

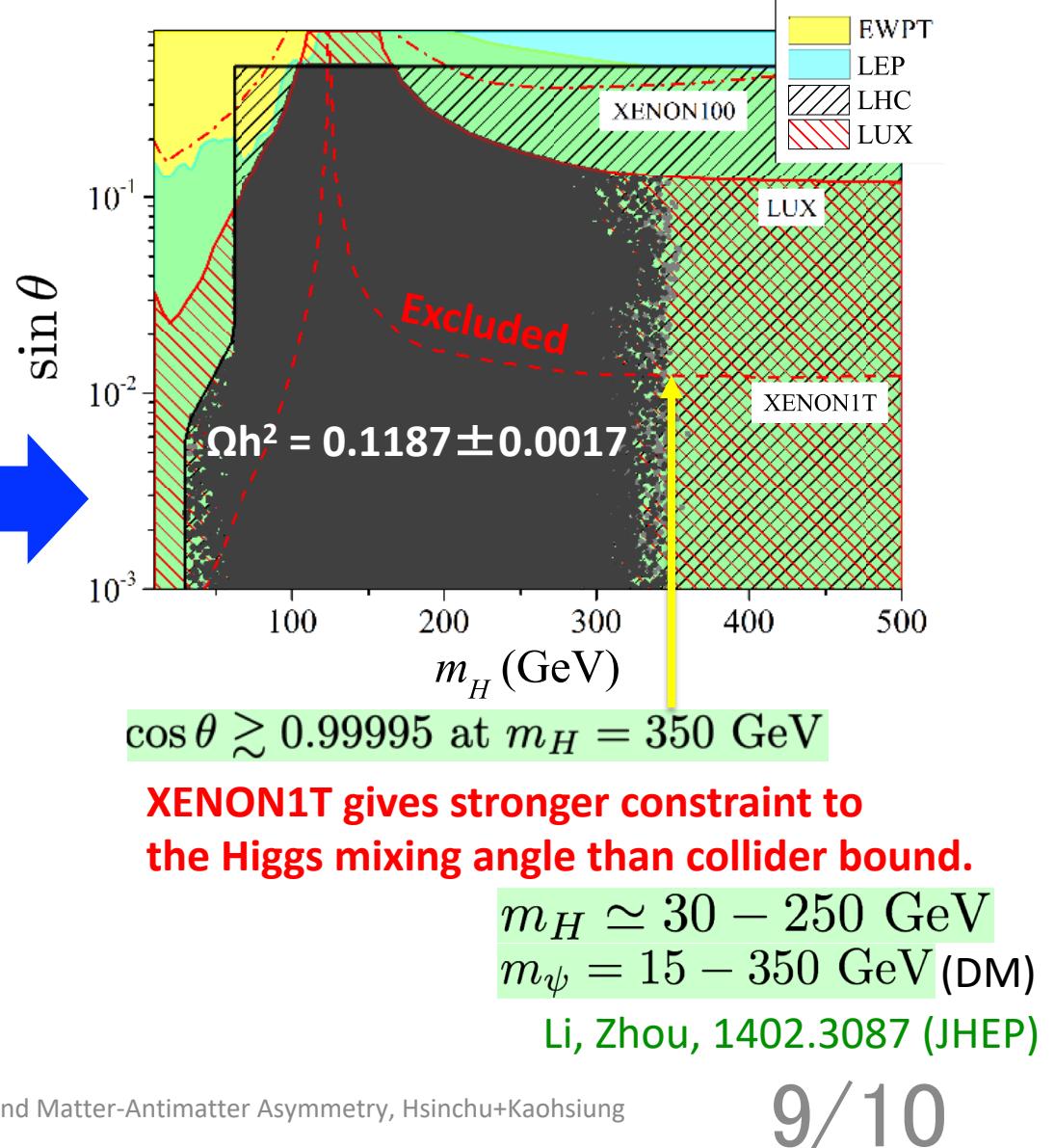
$$\mathcal{L}_{SFDM} = \bar{\psi}(i\cancel{D} - m_{\psi_0})\psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2 \quad m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- **PT is dominantly caused by tree level (scalar mixing) effect.** [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297 (PLB)]
- **DM contributes as the thermal loop effect.** [Li, Zhou, 1402.3087 (JHEP)]

- **Vector DM ($m_H, \theta; m_X, g_X$)** [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...



$$\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_\mu S = (\partial_\mu + i g_X Q_S X_\mu) S \quad S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + i x) \quad m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)

1stOPT in Fermion DM model

Higgs portal DM w/1stOPT

- **Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$)** [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{SSDM} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.
- **PT can be caused by thermal loop effect, but excluded by DM direct searches.** [Curtin, Meade, Yu, 1409.0005 (JHEP)]
→ Z_3 extension allow to satisfy the constraint from DM direct searches but $\Omega_{\text{DM}} < \Omega_{\text{obs}}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

- **Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)**

$$1112.1847, 1209.4163, 1305.3452, \textcolor{blue}{1402.3087}, \dots$$

$$\mathcal{L}_{SFDM} = \bar{\psi}(i\cancel{D} - m_{\psi_0})\psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2 \quad m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- **PT is dominantly caused by tree level (scalar mixing) effect.** [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297 (PLB)]
- **DM contributes as the thermal loop effect.** [Li, Zhou, 1402.3087 (JHEP)]
→ DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.

- **Vector DM ($m_H, \theta; m_X, g_X$)** [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_\mu S = (\partial_\mu + ig_X Q_S X_\mu) S \quad S = \frac{1}{\sqrt{2}}(v_S + \phi_2 + ix) \quad m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)

Higgs portal DM w/1stOPT

- **Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$)** [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{SSDM} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.
- **PT can be caused by thermal loop effect, but excluded by DM direct searches.** [Curtin, Meade, Yu, 1409.0005 (JHEP)]
→ Z_3 extension allow to satisfy the constraint from DM direct searches but $\Omega_{\text{DM}} < \Omega_{\text{obs}}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

- **Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)**

$$1112.1847, 1209.4163, 1305.3452, \textcolor{blue}{1402.3087}, \dots$$

$$\mathcal{L}_{SFDM} = \bar{\psi}(i\cancel{D} - m_{\psi_0})\psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

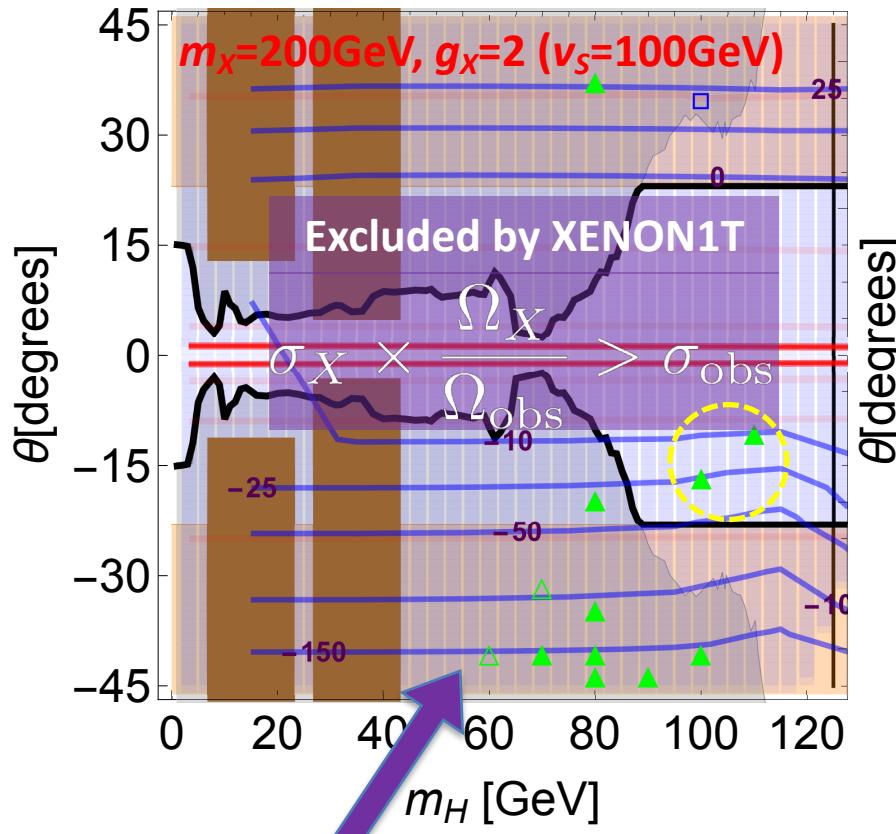
$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2 \quad m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- **PT is dominantly caused by tree level (scalar mixing) effect.** [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297 (PLB)]
- **DM contributes as the thermal loop effect.** [Li, Zhou, 1402.3087 (JHEP)]
→ DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.

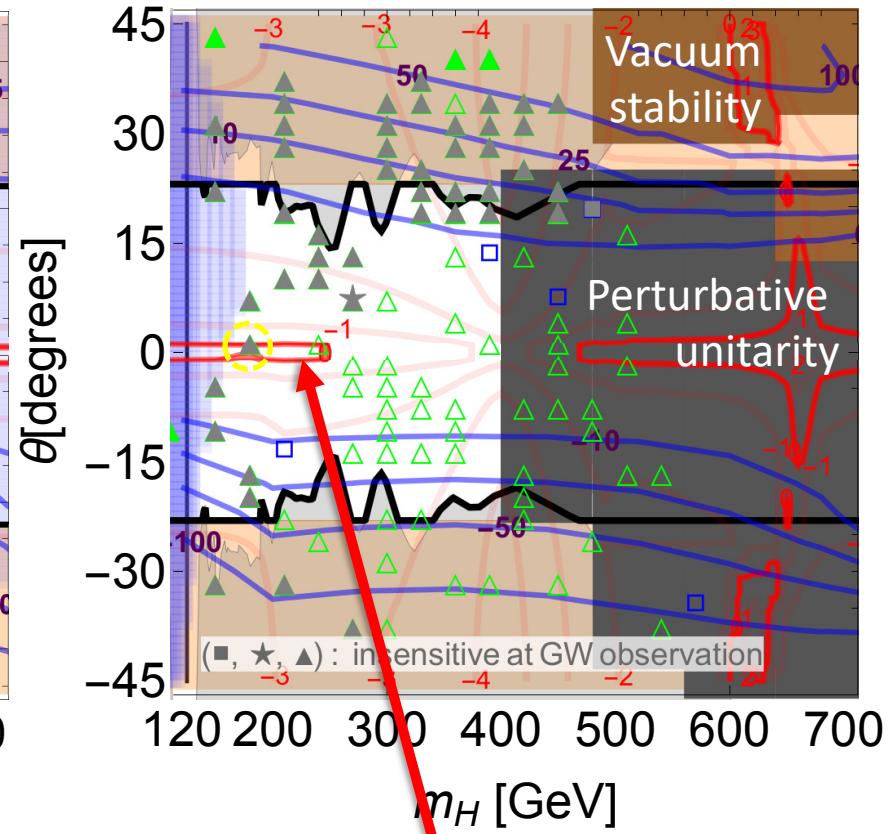
- **Vector DM ($m_H, \theta; m_X, g_X$)** [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$


$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_\mu S = (\partial_\mu + i g_X Q_S X_\mu) S \quad S = \frac{1}{\sqrt{2}}(v_S + \phi_2 + i x) \quad m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)


1stOPT in Vector DM model

Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947 (JHEP)

DM direct detection bound

[XENON Collaboration, 1705.06655 (PRL)]

Relic abundance of DM

$\Omega_{\text{obs}} h^2 = 0.1199 \pm 0.0027 \rightarrow \text{contours of } \log_{10} (\Omega_X / \Omega_{\text{obs}})$
 [Planck Collaboration, 1502.01589 (Astron. Astrophys.)]

Higgs portal DM w/1stOPT

- **Singlet scalar DM ($m_S, \lambda_{HS}, \lambda_S$)** [1210.4196](https://arxiv.org/abs/1210.4196), [1409.0005](https://arxiv.org/abs/1409.0005), [1611.02073](https://arxiv.org/abs/1611.02073), [1702.06124](https://arxiv.org/abs/1702.06124), [1704.03381](https://arxiv.org/abs/1704.03381), ...

$$\mathcal{L}_{\text{SSDM}} = -V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \frac{1}{2} \mu_S^2 S^2 + \lambda_\Phi |\Phi|^4 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{\Phi S} |\Phi|^2 S^2$$

- Scalar potential is imposed unbroken Z_2 symmetry.
- **PT can be caused by thermal loop effect, but excluded by DM direct searches.** [Curtin, Meade, Yu, 1409.0005 (JHEP)]
→ Z_3 extension allow to satisfy the constraint from DM direct searches but $\Omega_{\text{DM}} < \Omega_{\text{obs}}$ [Kang, Ko, TM, 1706.09721 (JHEP)]

- **Singlet Fermion DM ($m_H, \theta, v_S, \mu_{\Phi S}, \mu_S, \mu'_S; m_\psi, \lambda$)**

$$1112.1847, 1209.4163, 1305.3452, \textcolor{blue}{1402.3087}, \dots$$

$$\mathcal{L}_{\text{SFDM}} = \bar{\psi}(i\cancel{D} - m_{\psi_0})\psi - \lambda S \bar{\psi} \psi - V_0(\Phi, S)$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 + \lambda_\Phi |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu'_S}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$S = v_S + \phi_2 \quad m_\psi \equiv m_{\psi_0} + \lambda v_S$$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- **PT is dominantly caused by tree level (scalar mixing) effect.** [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297 (PLB)]
- **DM contributes as the thermal loop effect.** [Li, Zhou, 1402.3087 (JHEP)]

→ DM direct searches give stronger constraint. We expect that GW from PT will be detectable satisfying DM conditions.

- **Vector DM ($m_H, \theta; m_X, g_X$)** [1212.2131](https://arxiv.org/abs/1212.2131), [1412.3823](https://arxiv.org/abs/1412.3823), ...

$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^2 + V_0(\Phi, S)$$

$$D_\mu S = (\partial_\mu + ig_X Q_S X_\mu) S$$

$$V_0(\Phi, S) = -\mu_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_\Phi |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$S = \frac{1}{\sqrt{2}}(v_S + \phi_2 + ix)$$

$$m_X \equiv g_X |Q_S| v_S$$

- Scalar potential is a case for the spontaneously broken Z_2 symmetry in HSM. (**dark Higgs mechanism**)
- **PT is too weak to detect GWs.** [Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947 (JHEP)] → Extension is needed.